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INTRODUCTION

/ Optical surveillance sensors are sometimes subject to static noise pro-
cesses which can adversely affect the optimal processing of their resulting
imagery. For example, image intensity values derived from line outages, dead
pixels, '*popcorn noise and other such noise mechanisms will contaminate both
local and global estimates of the power spectrum density, probability density
function and other key statistical properties inherent to the original ob-
served scene. If these estimates are used to derive optimum filters for
detecting specific targets in said imagery or registering sequences of images,
poor processing performance could result. References 1 through 7 provide
excellent reviews of current image processing trends dependent on good quality
pictures and illustrate their utility for enhancing the inherent information

content found in remotely sensed images such as those taken by the LANDSAT and
NIMBUS-7 satellites. They also show the effect of noisy pixels on these
techniques arid the types of performance degradations incurred; which can be
significant. This suggests that methods for replacing the "'bado pixel values
with numbers commensurate with the inherent statistics of a detected image can
be important to optimum image processing in many applications.

The standard techniques for replacing bad pixels is to replace their
recorded values with the scene mean intensity value, or to average the eight
Intensity values surrounding the bad pixel and substitute the results for the
incorrect values. Unfortunately these methods do not necessarily take into
account the spatial coherence properties of the inherent surface clutter and
may not give the best representation of the true intensity values which should

be there. The intent of this report is to describe the potential merits of
three nonlinear estimation techniques for replacing noisy pixels in computer
(:ontaminat!d DAEDALUS Lmagery. The performance of these techniques will be

benchmarked aga.iinst the neighborhood averaging technique cited above.

.o
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PROBLEM APPROACH

During the past decade several nonlinear estimation techniques have been
used to smooth spiky noise-contaminated time series and optical-image data,
and their success has been reported in references 5, 6, and 8-10. Median
filters have emerged as one of the best methods found since they are effective
in estimating reasonable insertion values, while still preserving any mono-
tonic step edges present in the data (8). However, these filters and other

similar data estimators do contaminate the basic intensity statistics and this
can affect subsequent multispectral or time series data processing in some
nonlinear fashion. This can be especially detrimental when strong image-to-
image correlations are desired (11). The question is, "which nonlinear data
estimator provides the best data representation after application?" In an
attempt to answer this question, three popular nonlinear data filtering tech-

niques were assessed in their ability to correct computer contaminated
DAEDALUS imagery of significant outliers, with and without a bad pixel locali-
zation routine, and create reasonably accurate renditions of the uncontamin-
ated scenes. The benchmark performance levels were assumed to be those
obtainable from linear filtering using a neighborhood average and replacement
technique on the same noisy imagery. In the next two subsections, noisy pixel
replacement estimators, specific DAEDALUS imagery, and detailed experimental
procedures used in this investigation will be described.

PROPOSED NOISY PIXEL REPLACEMENT ESTIMATORS

Four data replacement estimators were assumed for this work; the first a
linear technique and the last three were of a nonlinear nature: namely

* Neighborhood Averaging Filter %
* Biweight Filter
* Median Filter

* Four Way Median Filter

This subsection provides a detailed description of each. Each filter operates
on the nine pixels found in a 3x3 pixel window about the pixel to be replaced
and these pixels are denoted in the following matrix f,)rm:

x(i-l,j-1 ) x (i-l,j) x(i-l,j+l)
x(i,j-l) x(i,j) x(i,j+l)
x(i+l,j-l) x(i+l,j) x(i+l,j+l)

In the above matrix, x(i,j) is the candidate pixel to be replaced. For tne
biweight and median filters, these nine values were passed to a sorting
routine (SHELLSORT) so they could be assembled in low to high order. The
other two filters did not require sorting and no other additional pretiltering
operations were imposed.

Neighborhood Averaging Replacement Filter

The neighborhood averaging replacement filter is ono which sums tie amnpli-
tude values of the eight array elements surrounding x(i,j) and divides the
result by eight to yield the replacement value for x( L, j ) . This coimputition
is similar to a local neighborhood mean estimate, except that the center ele-
ment is missing from the calculation. The ettectiveness of this estimation

2



method is dependent upon the percentage of noise inherent in the image, the
spatial variability of the scene, and whether some sort of noisy pixel screen-
ing procedure is applied to determine the need for filtering. Since this is
the benchmark technique for the study, these points will be discussed in
greater detail.

Most infrared and optical imagery are Markov-like random processes and
have autocovariance functions with envelopes which fall off exponentially over
some linear distance(s). If the clutter level of the image is low, a bad
pixel replacement can result because of either the presence of outliers, or
rapid decay of the spatial covariance. This latter situation implies the
spatial variability of the scene is high, such as an image of a city or other
such cluttered terrain. A noisy pixel test can minimize the occurrence of the
former, but nothing can really be done about the former without more informa-
tion. If the autocovariance of images falls off slowly, which implies slowly
varying clutter fields, bad pixel replacement will most likely only occur with
outliers present. Here again a noisy pixel test will help minimize efforts in
pixel replacement.

V.

When the noise level is high, bad pixel replacements can occur because
the mean and standard deviations derived from the imagery may replace good
values with bad or pass noisy pixels off as good. This is especially possible
when the spatial variability of the clutter is high. Obviously, a noisy pixel
test may not improve anything at all if its value cannot be easily determined
by the chosen test.

Given the above, nonlinear estimation techniques suffer the same problems
and/or to the same degree. This is the objective of the study and will be the
aspect investigated in some detail in the sections to come.

biweight Filter

i'-)r every pixel in an image of interest, an ordered nine element string
t intensities,

x(fl'Zx(2)<x(3) ... x(8)<x(9),

is p)iss,' t) tnle b1wegqht filter subroutine (BIWEIGiH') tor pixel replacement.
The first operation performed is to cacalitte the strintJ standard deviation
hii:wd ,upor thet interquartL le val es x(3) and x( 7), i.e. the subroutine

stantard deviation (S)) = [x(7)-x(3)]/1.349; for x(7).ne.x(3) (la)

1.483 (=1/.. 743) tor x(7).eq.x(3). (1b)

The. -uhroliti ne then derives an estimatd mean usino those elements in the
st riwi wit~ln flive standard dfviations of the me-lian elemnent x(5). Mathe-
mi i I,', ly tht.' pro rin ,,Voflates

N"
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Sx(i)*rect~x(i)-x(5))/(10*SD)]

1 (2)

Srect[(x)(i)-x(5))/10*SD)]

where x is the estimated mean and rect(z) is the rectangular function given by

rect(z) = 1; for abs(z)<1/2

= 0; otherwise.

This particular form of mean estimate allows one to derive an estimated mean
devoid of significant outliers which would contaminate the estimate.

A weighting function is then calculated using the formula

w(i)=[1-{(x(i)-x)/(6*SD)]**2]**2 (3) '-

for [(x(i)- )/(6*SD)]**2 > 1.0 the term becomes 1.0 and w(i) = 0. A new
estimate of the mean is computed through the relation

9
Sx(i)*w(i)

* A T p= 1 (4)
9

w(i)

and this number replaces the array element x(i,j). This technique has been
suggested as a more robust means of smoothing noisy data sets than the median V
filter [12] and this assertion will be evaluated in the study.

Median Filter

For every pixel in an image of interest, an ordered nine element string
of intensities,

x(1)<x(2)<x(3) ... <x(8)<x(9),

is passed to the median filter subroutine and the median string element x(5)
is substituted for x(i,j). The major advantage of median filtering is that
constant backgrounds, slopes and edges are preserved, while isolated pulses j '-

less than or equal to m=(n-l)/2 are suppressed, n being the length of the data
string and equal to 9 in this case.

Four-way Median Filter

The four-way median filter is a filtering routine which applies a one-
dimensional median filter in the north-south, east-west, southwest-northeast
and northwest-southeast directions sequentially. Pictorially, the tilter %

operates in the following sequence order:

4 1 3
2 * 2
3 1 4

4
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Although this filter only operates on three-pixel strings at any one pass,

this pixel estimation technique requires a larger initial array size upon
which to operate than the previous techniques. This is because the subroutine
performs an in-place four-way filtering operation and the resulting array size
from each pass is reduced by 2 rows and 2 columns.

Unlike the neighborhood average and biweight filters previously de-
scribed, this method does not replace array elements with computed values, but
rather replaces them with one of the nine original pixel values. The replace-
ment may he a good or noisy pixel, depending on its relationship to its adja-
cent neighbors on each pass, and whether a bad pixel test is applied. Tech-
nically, this type of filter derives a proper replacement only when one noisy
pixel exists in any chosen 3x3 pixel array and may make an error otherwise if
more than one outlier exists in these windows. Clearly the particular posi-
tion of the noisy pixels relative to the order sequence of the filter will
define whether an error is made or not. For example, all the pixels in the
3x3 matrix could be noisy except for the upper left and the lower right cor-
ners. On the fourth pass, a good replacement would occur.

TEST IMAGERY

The test imagery chosen for this investigation is a set of 512x512x8 bits
DAEDALUS derived images provided by E.M. Winter of Technical Research Asso-
ciatls- [ 13]. The DAEDALUS sensor was flown in the NASA/AMES U-2 over San
Francisco Bay and points south on 14 September 1983, and specific locations
interrogated included San Jose, Santa Cruz, Monterey Bay and Point Mugu,
California. The images used in this study were from the channel 5 segment and
possess an individual pixel field-of-view of approximately 28 meters. More
information on this flight can he obtained by contacting Dr. Winter at (805)
987-1972 in care of Technical Research Associates, Inc., 445 Rosewood Avenue,
Suite H, Camarillo, Calitornia 93010. r

This set was chosen because of the diversity of terrain recorded, i.e.,

the range of spatial variability interrogated. The six images selected for
the investigation were:

1. Lower 6an Frdncisco Bay (Sb ):85 bay, 15% city and fLatlands

2. Northern San Jose (SF2):85% city, I5' bay

3. Downtown San Jose (SF3):95% city, 5t tiatlands

4. Santa Cruiz Mountains (SF6):100% mountains

. San,ta Cruz (SF ):30, city, 7u% ocean

6. )c,.an and cloilds oft sarta Cruiz (SFII): 30% ocean, 70% clouds

J."
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These images are shown in their uncontaminated form in appendix B. In the

work to be described, two versions of the above imagery were used. One ver-
sion used the calibrated DAEDALUS imagery directly in the study. Untortu-

nately, most of the images possessed pixel values between 30 and 120, and tnis

gave a very low contrast image on the AED512 displays used. To alleviate this

problem, a second version was created which had the six images minimum/maximum
scaled into an 8 bit-digitized intensity form, i.e., the minimum value of the
image was set to 0, and the maximum value set to 255 and the rest of the pixel
values were sorted into the 254-integer levels in between. This allowed bet-
ter definition on the display and a better sense of reality to tne viewer. %

However, it does aftect the inherent image statistics in a nonlinear way.

Figure 1 illustrates the resulting intensity histograms for lowe- San

Francisco Bay scene. It is apparent that the figure possesses very similar

envelopes, as one would expect. The scaled DAEDALUS nistogram is simply an
expanded version of the unscaled DAEDALUS by a tactor 2.83. All of tne

DAEDALUS Imagery used in this study exhibited similar type scaling. The im-
pact of this scaling is that the scaled images will produce much larger difter-
ence variances than the unscaled images when both are subjected to the same
statistical manipulation. However, this is an artificial difference. The
relative performance of the various filters on tae two image versions is the
same and one will be able to draw the same conclusions by tocusing upon one or
the other set. In other words, absolute variances derived from inscaled
results should not be compared with thne obtained from scaled results 

RAW SCALED

w
U-

crc

0 30 120 255 0 255
INTENSITY INTENSITY

Fiqurp 1. Intensity histograms foi raw anm sdale(d Iower San Francisco Bay

DAEDALUS images.
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EXPERIMENTAL PROCEDURE

Programs (see appendix C) were written to allow the operator to select an
image, read it into memory, offset the entire image from zero by +300, and
allow selection of the following options:

* Introduction of Gaussian noise: percent, mean, and sigma of noise

* Bad pixel check (skip or perform)

* Number of sigmas from the mean of the selected neighborhood (for bad
pixel check)

* Neighborhood size; 3x3, 5x5, 7x7, 9x9, 11Xil (for bad pixel check) 4,

After selection of these options, the program introduced noise or not,
then displayed the mean and sigma of the difference between the original and
noise contaminated images. The program then either skipped or performed the
bad pixel check on a 452x452 subset of the original image. If the oad pixel
check was desired, the mean and sigma of the selected neighborhood around the
pixel was compared with the value of the pixel itself, and if it was within
the selected number of sigmas from the neighborhood mean, it was determined to
be a good pixel, and would not have to be filtered.

If the bad pixel check was skipped, then every pixel was filtered; when
the bad pixel check was performed, only the outlier pixels had the filtering
technique applied.

Atte r the application of the selected filtering algorithm, the program
displayed the correlation coefficient between the original and the filtered
Irnaqes, the mean and sigma of the difference between the original and the
filtered images, the percent of noise contamination selected, and the mean and
sigma of the added noise. In addition, the numbers of pixels replaced by
noise and the number of pixels corrected by the filter were displayed. The
number of noise pixels corrected and the number of good pixels disturbed were
also displayed. .

NOISE REPLACEMENT

The procedure for noise replacement was first to move the range of the
pixel values trom 0-255 to 300-555 for the scaled DAEDALUS images, and from
approximately 30-120 to 330-420 for the original DAEDALUS images. This was
done by adding 300 to every pixel value after the image was taken from disk.
By this method, the introduction of 6aussian noise with a oean of 0.0 and a
SLgma of 5.0 would make the noise distinctive from the original pixel values.
Noise valaes replacinq oriqinal imat- vdlies were then -20 to +20, with the
majority close to zero.

7



The actual noise replacement was done randomly over a 462x462 subset of
the 512x512 image. This allowed the actual experimental window of 452x452,
over which the bad pixel check and the filtering would occur, to be well with-
in the noise-contaminated area. For the four-way median filter, the contami-
nated area was slightly larger, 468x468, due to the added size of the image
required, as the filter shrinks the image by two rows and columns for each of
the four filter passes, resulting finally in the standard 452x452 image. As a
result, the percentage of noise replacement appears to be less than that of
the other filtering algorithms; on the other hand since the four-way median
filter makes four passes; the percentage of noise dealt with is equal in per-
cent to the noise dealt with by the other filtering methods.

As the program was repeated for different percentages of noise and with
and without the bad pixel check, and for six different images, the random

stream was always the same so that no one filter was given a different, or
perhaps adverse set of noise upon which to work.

The program allows replacement with Gaussian means and sigmas other than
0.0 and 5.0. The decision to use these values was based upon the need to use
noise that was different from the original image pixel values, and thus stand
out.

Noise replacement values used in the experiment were 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 20, and 30 percent. Zero percent was selected so that a gauge
could be established on how much the particular filter would disturb the image
when there was no noise replacement. By careful examination of the original
DAEDALUS images, flaws were discovered in the scanning sensor output in every
image. Therefore, it is reasonable to assume that in every filtering action,

some of this "noise" would be replaced.

BAD PIXEL CHECK

The program allows for two variations in the bad pixel check; first, to
skip it completely, and second to vary the number of sigmas. 'j

If the bad pixel check is skipped, then the filter is applied to every
pixel of the image, which for a 452x452 image is 204,304 pixels. This is the
maximum work for the filter, and the test of how well or badly the filter
performs in correcting the noisy pixels and not disturbing too many of the
good pixels.

The second variation, the number of sigmas, determines how much work the
filter does. During the bad pixel check, the sigma and mean are computed for
the selected neighborhood (3x3, 5x5, 7x7, 9x9, or 11x11) around the pixel
which is a candidate for filtering. If the candidate pixel is within plus or
minus the selected number of sigmas from the mean, the pixel is considered
good and does not require filtering. If it falls beyond the selected number
of sigmas about the mean, then the pixel is a candidate for filtering. By
reducing the number of sigmas, more filtering is achieved; by increasing the
number of sigmas; filtering is reduced.

If the filtering is reduced, less harm is done when the candidate 1lx-L
is one of the original image pixels, but when the candLdate pixel is a noisy

pixel, then it may escape detection as a bad pixel when the number of siqmas

B%



is high (i.e., 3.0 or more). On the other hand, when the number of sigmas is
low (making the good pixel window smaller) more pixels will be filtered; some
good and some of the noisy pixels. This is the tradeoff in using the bad
pixel check; a number of sigmas has to be selected which will detect the noisy
yet not filter the good pixels. Several of the filters, by nature of their
design, tend to do less harm to good pixels, and have more success with elimi-
nation of noisy pixels. These are the median and four-way median filters.
These filters do not arithmetically modify pixel values; but by the process of
elimination move pixels around. Noise pixels become the outliers and pixels
within the neighborhood of the candidate pixel take the place of the noisy
pixel. The neighboring pixels are not the same as the replaced pixel, but are
very close to its value if the gradient of the neighborhood is low.

BAD PIXEL CHECK NEIGHBORHOOD

Another variable tor the bad pixel check is the neighborhood of the candi-
(date pixel. The operator is given the opportunity of selecting 3x3, 5x5, 7x7,
9x9, or 11xl1 submatrix for the neighborhood. During the bad pixel check, the
pixels in the submatrix selected are averaged, while at the same time the
standard deviation of the neighborhood is computed. Then the candidate pixel
is checked to see if it is within plus or minus the number of sigmas around
the mean. It so, the pixel is considered good; if not, it is filtered. The
size of the neighborhood affects the outcome of the bad pixel check; if the
neighborhood is snall, one or two bad pixels in the neighborhood can contrib-
ute to the mean and standard deviation in such a way as to bias the true mean
of the neighborhood. This is shown in figure 2.

500

MEAN ZERO
NOISE

400 MEAN
W/NOISE

300
C,,

Z

Z -
< 200

SIGMA100.. .. "O W/NOISE

100 . .

.4. SIGMA
N ZERO NOISE

11X 11 9X9 7 X 7 5X5 3X3

SUBMATRIX SIZE

Figure 2. Effect of noise on image statistics.
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For the zero-noise case, the mean and sigma for the 3x3 neighborhood are

430 and 22; after introduction of one noisy pixel, the mean dropped to 383,
and the sigma increased to 137. On the other hand, for the 11x11 neighbor-
hood, the mean shifted down from 492 to 488, and the sigma increased from 120
to 127, with the introduction of only one noisy pixel. This information was
produced with simulated data for an image which had a moderate gradient. The
main purpose of including the information is to show the effects of small
amounts of noise on small neighborhoods, and indicate how a single bad/noisy
pixel can radically affect the normal statistical measures of quality on appli-
cations in image processing.

In figure 3, the combined effects of number of sigmas and neighborhood

size selections are shown upon the numbers of noisy pixels and good pixels
replaced. This study was made with only one percent noise using the median
filter on the ocean and cloud image (SF11DED). The plots 3x3g and 3x3b repre-

sent respectively the amount of good and had pixels replaced by the action of
the filter with increasing number of sigmas selected for the 3x3 neighborhood.

The 3x3b plot at number of sigmas = 2 replaces less than the total (2076)
noisy pixels, so its effectiveness is not perfect at number of sigmas = 2. In
addition, at number of sigmas = 2, the 3x3 (3x3g) neighborhood is responsible
for replacing (and perhaps disturbing) 4000 good pixels. At number of sigmas
= 1 (not shown), the 3x3 neighborhood replaces all of the 2076 noisy pixels,
but disturbs more than 61,000 good pixels. The best operating point for the
3x3 neighborhood is at number of sigmas = 2.8265, where 1906 bad pixels are I
replaced and only 104 good pixels are disturbed. The neighborhood which per-
forms the bad pixels check best is the 9x9 neighborhood with number of sigmas
= 4, where 2051 noisy pixels are replaced and only six good pixels are dis-
turbed. Of course these plots were made for the most benign (least cluttered)
image in the study (SFI1DED.IMG).

1% NOISE = 2076 BAD PIXELS
4.0

3.8 5xSb

7x7b

3.6
9x9h

S3.4 -

.34

U.
0

* UU
00 3 0 5 3 1.0 15 20.. 30 3. .

76-

24 3x3q
9x9g

2.2 . . - 5x5,1

O 0 0 5 1.0 1 5 2.0 2.5 3.0 3.5 4,0

1000's BAD AND GOOD PIXELS REPLACED

Figure 3 Neighborhood versus number si mas (SF1 DED.IMG).
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The apparent result of this analysis is to select a large neighborhood.
The original set of data (shown in appendix A) was taken with the bad pixel
check using a 5x5 neighborhood and number of sigmas = 2. When the discovery
was made that using the bad pixel check with the 5x5 neighborhood and the
number of sigmas = 2 resulted in not detecting all of the bad pixels, and at
the same time disturbing many good pixels, more data were taken using an 1IxI
neighborhood and varying numbers of sigmas depending upon the amount of noise
in the image. The number of sigmas varied from 4.1 for zero noise to 1.0 for
40% noise.

4'
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SIMULATION GROUND RULES AND LIMITATIONS

This section outlines the major ground rules and limitations of the per-
formance and are described in the following sections.

DIGITAL PROCESSING PROCEDURES

In the initial design of the experiment, everything was done to assure

uniformity of procedures for each filter, so that comparison of filtering

techniques would be based upon identity of noise-contaminated images for each
filter input. The random number generator was seeded at the same starting

point so that every image for each filter would have the same value of noise
entered into the same pixels. The selection of a 452x452 submatrix image of
the original 512x512 DAEDALUS images was standard throughout the study. The
introduction of noise was over a 462x462 submatrix for the biweight, median,

and neighborhood replacement filters. The four-way median filter required
noise to be introduced over a 468x463 submatrix, due to the shrinking of the

four-way median filter through each of its four passes, resulting tinally in
the 452x452 image which was compat_-d to the original image. The geometry for
the submatrix sizes is shown in figure 4.

COL= 1.. 2324252627282930131........

ROW= 1

23 468 X 468 FWM FILTER NOISE 'S.

24
25 

FWM BAD PIXEL
CHECK AREA

26 462 X 262 BW,M,NR FILTER NOISE
BWMNR BAD

_ 27 _PIXEL CHECK AREA

28 1 FWM PASS 1 458 X 458

29 122 2 3 FWMPASS2456X456

30 34 FWM PASS 3 454 X 454

31 3 4 FWM PASS 4 452 X 452

BW=BIWEIGHT4

M=MEDIAN

NR=NEIGHBORHOOD
REPLACEMENT 452 X 452

FWM=4-WAY MEDIAN COMPARISON AREA

Figure 4. Submatrix size geometry.

In the design of the programs, options were added to vary tne mean and

sigma of the Gaussian noise to be replaced in the image and to vary the number

of sigmas for the bad pixel check. In addition, provision was made tor the
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selection of any one of the five different neighborhoods for the bad pixel
check. These were extra features which extend the capability of testing.

DESIGN LIMITATIONS

Some of the limitations caused by program design considerations are the
images themselves. initially taken from the DAEDALUS tapes, these images are

in raw, byte form, eight bits per pixel. The raw data image pixels have a
limited integer range, usually from 30 to 120. In order to display these
images and obtain a good definition of geographic features, the programmer
must scale the images into the color table (or gray-scale) range of 0 to 255.
Both types of images, the raw and the scaled images, were included in this
study. The difficulty of using various filters is that floating point values
generated by the filtering algorithm (for example, the biweight and the neigh-
borhood replacement filters) are rounded to the nearest integer before being
placed back into the image. When the difference between the original and the
filtered images is taken, these roundoff errors have been insignificant due to
the randomness of the dropped fraction and the fact that NINT (nearest inte-
ger) function is used. If the pixel value is nn.00 to nn.4999, only those
amounts are lost. If the pixel value is nn.5000 to nn.9999, the corresponding
amounts are gained. Thus, over a large n, the differences disappear. This
has been verified by a program. The differences are not visible until the
third decimal place, and the differences are inconsistent depending upon the
amount of noise induced into the image.

In the illustrations of the filtered images, a small border of noise
remains around the edge of the image. This five-pixel noise border is outside
of the 452x452 filtered images area, but noise has been added to this area
(462x462) to simulate a full image with noise. The five-pixel border allows

for an 1ix1l neighborhood for the bad pixel check. The noise area for the
tour-way median filter also contains a five-pixel border with residual noise
tor the same reason. The four-way median filter five-pixel noise border is
three pixels in each direction farther out from the other three filters' noise
botner.

FILTER WEAKNESSES

In the original study, the ettectiveness of the filters begin to deteri-

orate rapidly after 1)% noise. Beyond 30%, the filters begin to lock onto
noise and begin to reject the remaining good pixels. Tests (not shown) have
been conducted to verif this condition. However, it is not expected that
imags with more than 10% noisy pixels would be worth processing.

The complexity and conse-quent tine involved in running these filters on a K
computt!r are not too great; but compared among themselves, there is quite a
-ifferernc in execution time.

Tue simplest is the neighborhood replacement filter. It requires no
sorting or multiple passes. It simply sums the eight neighbors and divides by

The next in complexity is the median filter, which assembles the nine
. pixels from the 3x3 array around the candidate pixel into a 1x9 array. This

array is then passed to the routine SHELLSORT, which on the average makes six

13
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passes to sort the nine numbers. The routine would be more efficient if there
were more than nine values. When the array passed to SHELLSORT is already in

low to high order, three passes are required which performs 20 IF statements,
but no movement of values. When the routine is done, the array contains the
values in ascending order. The last step of the filter is to store the median
value x(5) into the candidate pixel.

A complicated filter is the biweight filter. It performs the same steps

as the median filter, assembling the 1x9 array, passing it to SHELLSORT, but

on return from SHELLSORT, the biweight routine is called to do the rest of the

processing as described above. Formerly, biweight was an iterative routine

which refined the answer through as many as 200 iterations. But since the

test for convergence was 0.01 between the former (xhat) and the new (xhat),
this portion of the routine was removed. The operation of the NINT statement

in converting the floating point result to integer, more than compensated for
any further refinement.

The application of the four-way median filter requires four passes,
making it the most time-consuming filter in this study. The actual method

used was to do an in-place four-way tilter reducing the loop control by two
rows and two columns each iteration. Since tor each iteration the number of

pixels involved is only three, the sort routine was not used. In figure 5,
five IF statements were used to solve the truth table.

Programminq application requires that when applying a two-dimensional
loop control to an nxn matrix, the solution of a matrix operation proceeds row

by row and column by column. When in-place filtering is pertormed using a 3x3

window, as all the selected filters in this study are, the following phenomena
becomes apparent as shown in figure 6.

The pixels above the nold line are pixels which hive already been fil-
tered; the pixels below the bold line are pixel- which have riot been filtered,

including the candidate pixel. Tri iS an exXpl.Ie3 of in-place filte ring.
There are problems and also aivantages t,) thi- method or pr,)cess] i)(. The
advantages are:

1. If noise nas e)#,en elimirnatei from tne pixe is that ha-ve already Oet.ne

processed, the nevghbornood mean and :ilma t)r the baId pixel check will a Li In

determining morte accurately whether the *>n iua te, piel is gd,)) or has t) I.n
filtered.

2. If the pixel rias to be t itertii, the tilt-iring ilortlin will nv av
had fewer noisy pixels tn deal with in determininq .t substitut vilhie.

The problems are:

1 . It a good pixel has been replced iby another, or a noisy pixel ha:s

not been filtered and stil l remains in the ilroady arce~sse ara, then the.
neighborhood mean and sigma for the had pixel 7ieck will Pos-sn)ly r"esult II
tagging a good pixel bad, )r ta(;in; a n,)isy pix-I as jod. In ci the-r ,ast,,

this is not desirable.

2. In the filtering algoritnm, whether the candidate pixel is good or
bad, the chances are that it will be replaced with one that ; either worse or

%. 14
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PL P1 P 1
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P2 < X < P1 NO ACTION 3

X < P1< P2 PI-.X 2
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Xi,j) = X = THE CANDIDATE PIXEL

Xfi,j) - e) 
= P1

X(i,) +e) P2 FOR e = 512,1,511,513 FOR PASSES 1,2,3,4

Figure 5. Four-way median filter processing.
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,__DIRECTION
I OF ROWS

UNPROCESSED
PIXELS

Figure 6. N x N pixel processing geometry.
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almost as bad. Unfortunately, some of the advantages and some of the problems
prevail throughout the filtering techniques studied in this experiment.

The solution then, could be to not perform in-place filtering. This is
accomplished by building the filtered image into a separate image. This was 0_

tried, and in all cases the results were slightly degraded, which means that 0
the advantages of in-place filtering slightly out-weigh the disadvantages. Of
course when the bad pixel check is skipped, a large part of the problems of in-
place filtering disappears, and the advantages become preponderant.

Experimentation was performed with a noisy mean other than 0; a mean of
50 was tested which made all of the noise positive, and as expected, the dif-
ference sigmas were slightly improved.

The closer the mean of the noisy pixels approached the mean of the good
image pixels, the difficulty in detecting the noisy pixels become more pro-
nounced. As shown in figure 7, the upper tail of the noisy pixel distribution
intrudes upon the lower tail of the good pixel distribution. When this hap-
pens, a lower number of sigmas for the bad pixel check results in a smaller
number of noisy pixels replaced and a greater number of good pixels disturbed.
The number of sigmas for the bad pixel check must include all the good pixels,
while at the same time excluding all of the noisy pixels.

IMAGE
>_ MEAN +
2 SIGMAS SIGMAS

Da r- -I / - I
NOISE I
MEAN -

PIXEL INTENSITY

Figure 7. Effect of increasing noise mean on bad pixel detection.
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RESULTS

In addition to the filter performance results, this study provided find-

ings regarding:

1. The use of raw versus scaled DAEDALUS images.

2. The use of the bad pixel check versus applying the filter over the

entire image.

3. Characteristics of increasing noise and the effects upon the filters' e

performances.

4. Measurement statistic for filter performance.

5. Filtering of different images.

6. Maximum performance expected from a given filter.

7. Image distortion with zero-noise.

8. Improvement of the bad pixel check.

RAW VERSUS SCALED DAEDALUS IMAGES

In all of the raw DAEDALUS image plots, all four filters performed better %

than when the scaled DAEDALUS images were used. The performance was similar
for both types of data, but the raw images resulted in lower difference sigmas
between the original and filtered versions. This was due to the narrower

range of histogram values exhibited by the raw DAEDALUS data which were usual-
ly between 30 and 120, as opposed to the scaled DAEDALUS data which were be-
tween 0 and 255. These differences appear significant, but they are only
relative.

BAD PIXEL CHECK VERSUS ENTIRE IMAGE FILTERING

The ranking of the filters changed radically when the filter was applied
o)ver the entire i.,aq(- (no bad pixel check), and specifically,tenigbrod

replac#!ment filter performance declined adversely over the low range of noise
(0 to 4 percent), see figure 8.=

Generally using the bad pixel check, the following results were true:

w'.

1. At ) and I percrnt nois- the biwelght filter was better than the rest
sometimes by only -i very slight mnr;in. The four-way tilter outperformed the
biweight it 0 prcent in 3 out of the 6 images, doing better on land alone, as

opposed t) the biweight's better performance when water was involved in the

At 2 i),r ent noise,, sometLmes the biweiqht, med ian, or four-way was
th' bhest With the raw )A}EDATI: inaLjes, the biweight didn't do as well; a tie
tis~l I y r:;oil ted between the mdi,-in and the four-way medlin.
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3. At 3 to 5 percent noise, the four-way filter was usually the best,

except occasionally the median filter outperformed the four-way filter using

the scaled versions of the images.

4. From 6 to 30 percent the four-way filter outperformed all the other
filters for both the scaled and raw images.

Generally, not using the bad pixel check (when the filter was applied

over the entire image) the following results were true:

1. At 0 and 1 percent noise, the biweight filter performed the best for J,
both raw and scaled images, but only by a slight amount over the median filter.

2. At 2 percent noise the median filter performed best for the raw

images, and the biweight filter performed best for the scaled images. In the
case of the ocean scene the four-way filter performed best for the raw image.

3. At 3 to 30 percent noise, the median filter performed best for four
of the scaled images (bay, downtown San Jose, mountains, and Santa Cruz). The

four-way filter shared best performance with the median filter in this range

for two of the scaled images (North San Jose and ocean). For the raw images

(San Francisco Bay and downtown San Jose), the median filter performed best.

For four raw images (North San Jose, mountains, Santa Cruz, and ocean) the
tour-way filter shared with the median filter, in this range.

The results of best filter performance are shown in table I.

EFFECTS OF NOISE UPON FILTERING ACTION

Figure 9 shows the effects of increasing noise upon pixel replacement for

the bad pixel check. Though this plot is for the ocean image, the remaining
images have very similar plots. The data for the no bad pixel check (when the
filter is applied over the entire image) are not worth considering since the
number of pixels replaced are 204,304 for the biweight, median, and neighbor-

nood replacement filters, and, though the numbers vary, between 431,000 and
61 3,00 for the four-way filter.

The interesting aspect of figure 9 is that it clearly depicts the actions

of the filters throughout the noise range of 0 to 30 percent. The key points

are 0 dnd 10 percent. At 0 percent noise, all of the filters perform filter-

nng when in reality, none is required. This of course means that this ten-
dency of a filter to replace good pixels is going to persist to some degree as
noise is added to the image. Between 0 and 10 percent noise contamination,

the number of pixels replaced by most of the filters appears to approach the
true number )f noisy pixels, but this is merely an illusion, for during the
gradual introduction of noisy pixels, the respective filters continue to re-

place g;ood as well as bad pixels, presumably to a lesser degree.

Up to 20 percent noise contamination, most of the filters appear unable
to keep up wi th th- Increaslnq7 noise contamination, and though they replace

fore pixels in ahsolute number, it is apparent that a good deal of the noisy
pixels are not being replaced, except for the four-way median filter.

1)



-- - - - .

CAC

LL. w L

C- j - 0 , C
r I M

cc

200



30

NOISE PIXELS

204) F N FW

- 15 i

10
u I

5X5 BAD PIXEL CHECK
5 N SIGMAS 2

GAUSSIAN NOISE MEAN 0
GAUSSIAN SIGMA = 5

0 5 10 15 20 25 30 35 40 45 50 55 60

1000's of PIXELS REPLACED

Figure 9. Pixel replacement (SF1 1.1MG).

From 20 to 30 percent the filters show strong signs of degradation. The .

noise is beginning to strongly degrade the bad pixel check which allows the

retention of the noisy pixels.

The four-way median filter deserves special discussion since its method
of application is unique. In figure 9, the four-way filter clearly does more
pixel replacement than any of the others at every percentage of noise introduc-
tion, and at zero percent noise, the four-way filter replaces more good pixels
than any other. As each pass of the four-way filter takes place, fewer and
fewer pixels are replaced. From the shape of the four-way filter envelope in

Figure 9, its general behavior is similar to the other filters, except that it
performs more pixel replacement, even at the higher noise percentages.

The method of counting the number of replacements for the four-way filter
is different than the method used for the other filters. For the other fil-

ters, it the bad pixel check indicates tnat the pixel needs replacement, the
count of the replaced pixels are incremented, and then the filtering action is
tdken. For the four-way filter, if the bad pixel check indicates that the
pixel requires replacement on one of the passes, the filtering action is taken
(via the five IF statements), and if the pixel to be replaced is determined to
be replaced by itself, then the count of the replaced pixels is not incre-
mented. Tho replacement pixel count is only incremented when the pixel to be
replac,'d ks replaced with one of its two neighbors (vertical, horizontal, or

.)n one of the dii3jonld 1)-
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STATISTIC FOR PERFORMANCE MEASUREMENT

The best statistic for measuring the performance of the filters was found
to be the standard deviation of the difference between the original image and

the filtered image after the filter had been applied to remove the noise.
For every level of noise, each type of image, whether raw or scaled, and with

and without the bad pixel check, the correlation coefficient and the sigma of
the difference between the original and the filtered images were computed for
each filter. The correlation coefficient is not as good a comparison statis-
tic as the difference sigma. Hence the difference sigma was used to produce

the plots shown in appendix A.

If the filtering action had removed all of the induced noise from all of
the images, the mean and the standard deviation of the difference between the
original and filtered images would have been zero, and the correlation coeffL-
cient would have been 1.00.

However, since at each percentage of noise replacement, there is residual
noise after the filtering action, the mean of the difference is usually approx-

imately zero, with a nonzero standard deviation, and a correlation coetricient
less than 1.00. As increasingly more noise is placed into the images, and as

filtering of noise decreases as shown in Figure 9, the mean of the difference
between the original and the filtered images becomes more and more positive,
due to the greater number of noisy pixels that remain in the filtered image.

FILTERING OF DIFFERENT IMAGES

With the exception of the ocean and cloud scene (SFII.IMG and
SF11DED.IMG), most of the filtering actions upon the various images was simi-
lar. The four-way median filter fared better overall with the ocean and cloud
scene than the other filters. All the filters had better performance with tne L

ocean and cloud scene than the other images; the initial disruption of the
zero-noise version was less, and from that point on with increased noise,
every filter out-performed itself compared to its performance with tne other
images.

• MAXIMUM PERFORMANCE EXPECTED FROM A FILTER

This study presented an opportunity to evaluate a given filter in order
to determine its maximum possible filtering capability. :ince trie original

images were offset from 0 by 300, since Gaussian noise was placed in the image

in percentages from 0 to 30 percent, and since the value of noise added varied

between -20 and +20, a very simple algorithm was employed to test the maximum
potential of a given filter. Instead of employing the usuril oad pixel ,:herck,
in its place a check was substituted to determine if the candidate pixel was
less than 300. If less than 300, it was noise and tne filtering action wat;
invoked; if not, the pixel was considered good, and filteriug was by-passed.

Figure 10 compares the expected and actual performance of tne hiw:ight
and neighborhood replacement filters. These two filters are grouped, to;'-tht-r

because they essentially act the same. The falloff in performance as noise is
increased is apparent both in the maximum possible and actual performnance. ,t
course, the actual performance falls off more rapidly than the expected. 'ehe
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Figure 10. Actual/expected performance lower San Francisco Bay, biweight and
neighborhood replacement.
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closest area of coincidence is between 2 and 4 percent noise contamination,
with the closest point at 3 percent.

Figure 11 compares the expected and actual performance of the median and
tthe four-way median filters. These two filters are grouped together because
they act in a similar manner. Both of these filters perform bad pixel replace-
ment with actual image values, and not computed values as do the biweight and
the neighborhood replacement filters. The maximum performance of both these
filters is very fine and very similar. The actual performance, with the
exception of the zero-noise offset, follows the slope of the expected perfor-
mance very well until after 4-percent noise, when it degrades in a manner
similar to the biweight and neighborhood replacement filters. The expected
performance of these filters shown in Figure 11 is mirrored by the performance
of these same filters when the bad pixel check is skipped and tne filter is
applied over the entire image, refer to appendix A.

When the four-way filter was run using the less-than-300 check to deter-
mine its maximum possible performance, it was noted that during the first
pass, a greater percentage ot pixels were replaced than were in the 452x452
image. This was due to the fact that the area for the first pass was 458x458
and thus contained more noisy pixels. on the subsequent passes, lesser and
lesser amounts of pixel replacement occurred, indicating that not all pixel
replacements were made with good pixels, but as the noise pixels were gradu-
ally eLiminated, thp tewer remaining had a better chance of being replaced by
a good !icene pixel.
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Figure 71. Actual/expected performance lower San Francisco Bay, median and

four-way median.

IMAGE DISTORTION WITH ZERO-NOISE

The effectiveness of the various filters evaluated in this study depends

also upon the amount of distortion caused by the filter at zero-noise, tor if
any filter is to perform well, it must have minimal distortion on the image
when there is no noise in the image. If there is a great deal of image distor-
tion caused by the filtering action when there is no noise, then this tendency
will continue regardless of the amount of noise actually in the image. An

analysis was made of the zero-noise level of filtering tor all of the images

(raw and scaled) and for the bad pixel check versus the no bad pixel check.

The sigmas of the difference between the original and the filtered images were
used as the criteria. The sigmas for all of the filters at zero-noise were

averaged and were used to construct table II. The average of the zero-noise
values was used because for all of the filters, on any one image, the sigmas
for each of the four filters were very close together in value, as can b- seen
from the plots in appendix A. In most cases the deviation was only .01 to .66
in magnitude. The individual filters were also ranked by their anility to
minimize zero-noise image distortion.
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Table II. Filter image distortion with zero-noise.

BAD PIXEL CHECK NO BAD PIXEL CHECK
Scaled Order Raw Order Scaled Order Raw Order

Sigma Sigma Sigma Sigma

SF1 3.61 1 2 3=4 1.2 1 2 3 4 10.8 1 2 3 4 3.59 1 2 4 3

SF2 2.89 4 1 2 3 .97 4 1 2 3 8.03 1 2 4 3 2.7 1 2 4 3

SF3 7.1 4 1 2 3 2.36 4 1 2 3 17.62 1 2 4 3 5.88 1 2 4 3

SF6 3.75 4 1 2=3 1.48 14 1 3 2 9.13 1 2 4 3 3.65 1 2 4 3

SF8 3.37 1 4 3 2 .84 1 4 3 2 8.06 1 2 4 3 2.01 1 2 4 3

SF11 1.44 1 4 2 3 .51 1 2 4 3 3.92 1 3=4 2 1.35 1 3 2=4

Biweight=1, Median=2, Neighborhood Replacement=3, Four-way Median=4

All sigma values are averaged for all four filters.

One outstanding characteristic of all of these filters is that they all.
have the same propensity of image distortion at zero-noise. Even though the
biweight filter was better than the rest, its performance in terms of the
others was not that much better; the ranking is only an artifact of comparing
the absolute values, and being forced to select one as greater than or less
than another. In view of this comment, the performance of the filters at zero-
noise is (1) biweight, (2) median, (3) four-way median, and (4) neighborhood
replacement, from best to worst.

At zero-noise, the effect of not performing the bad pixel check is to

introduce more filter distortion into the image, however this tendency is not

so pronounced when comparing the raw images. At zero-noise approximately 3
percent of the pixels are distorted from the original and if as mentioned
earlier, some of this distortion is actually removing noise that was present
in the original image, then this concern of distortion at zero-noise would
become lessened. However, when the filter is applied to the entire image
(without the bad pixel check), the median and four-way median filters do tend
to follow their maximum possible filtering curve better than when the bad
pixel check is performed.

IMPROVED BAD PIXEL CHECK

Ihe had pixel check was improved by increasing the neighborhood to lixil

and using various number of sigmas for increasing amounts of induced noise as
shown in table I[[.

25

%



I
p.[

Table III. Improved bad pixel check (11x11 neighborhood).

Noise (%) # of Sigmas Noise Pixels Noise Replaced Good Disturbed

0 4.1 0 0 14

1 3.5 2076 2076 24

* 2 3.5 4074 4074 14

3 3.5 6021 6021 6

4 3.1 8035 8035 19

5 3.0 10,069 10,068 11

6 2.9 12,084 12,079 5

7 2.8 14,056 14,047 5 "

8 2.7 16,068 16,061 3

9 2.6 18,075 18,067 3

10 2.5 20,110 20,105 5

20 1.5 40,259 40,259 0

30 1.3 60,716 60,712 0

40 1.0 81,424 81,424 16

Tests were run on the raw DAEDALUS images downtown San Jose (SF3DED) and
ocean and clouds off Santa Cruz (SF11DED). These are respectivnly the most

and least cluttered of the images. The results are shown in figure 12 for

downtown San Jose, and in figure 13 for ocean and clouds off anta Cruz. The

improvement in both imags over the performance using the bad pixel check with

a 5x5 neighborhood and constant number of sigmas = 2 is substantial. The %

unevenness of the plots between 5- and 10-percent noise could bp eliminated by

fine-tuning the selection of number of sigmas, because, as table III shows,

not all of the noise was removed. Residual noise contributes more to in-

creasing the difference sigmas (difference between the oriqinal and filtered

images) than does the small amount of good pixels disturbed.

11 X 11 BAD PIX CK MIXED SIGMAS: Gm 0 Gsd - 5
(NS=1.0) 40

35

(NS=1.4) 30 FW

IIMED

~25
0

(NS--2.5) 1 0

(NS=3.0) 5 9CORREATION AT 3 35 DIFFERENCE SIGMAS

(NS=4.0 0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

ORIGINAL - FILTER DIFFERENCE SIGMA

Figure 12. Improved filter performance (SF3DED.IMG).
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11iX 11 BAD PIX CK MIXED SIGMAS; Gm =0; Gsd =5

(NS=l.0) 40

35

* FW

*(NS-1.3) 30 - W

wU2 MED
(0

*(NS=1 .5) 20
LU

15 15

(NS=2.5) 50

(NS--.0) 595% CORRELATION AT 3.35 DIFFERENCE SIGMAS%

*(NS=4.1) 0 1 1 1 1
0 5 10 15 20 35 40 45 50 55 60 65 70 75

ORIGINAL - FILTER DIFFERENCE SIGMA

Figure 13. Improved filter performance (SF11DED.IMG).
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SUMMARY OF FILTER PERFORMANCE

The major consideration in arriving at a final determination of filter

performance is not to look at the statistics alone, but also to look at the
final filtered image. All of the filters have a tendency to blur or distort
the original in some manner. The manner of inducing noise in this study was
not to add or subtract some constant (or even variable) to the pixels in the
image. The actual pixel values were replaced with values that have no rele-
vance to the original pixel value. The original pixel value is gone; it can
never be completely recovered. The filtering techniques were evaluated to see
how well the substituted value came close to the original pixel value.

Another consideration is the amount of noise that a filter is expected to

replace. Even with levels of noise as high as 50 percent, it is surprising
that a human being can still recognize the major content of an image. In this
respect, all of the filtering techniques appear to be performing well. On the
other hand, if restoration of an image is required to make intelligible some -

small 2x2 or 4x4 pixel area for identification purposes when 50 percent of the %
pixels are replaced by noise, then these types of filters would be inadequate,
if indeed any would be adequate.

Several criteria have been selected to evaluate the filters in view of
the above:

1. The potential of the filter at different levels of noise:

2. The effectiveness of the filter at different levels of noise

FILTER POTENTIAL L

Figures 10 and 11 show that the maximum potential for the tour filters is
limited assuming that a bad pixel check can be designed which will precisely
identify only the bad pixels, and if these are compared, the ranking of the
filters would be (1) median, (2) four-way median, (3) biweight, and (4)
neighborhood replacement. This is the best that the filters could pertorm.
The expected performance is thus the best it could possibly be throughout the
entire range of noise replacement, from 0 percent to 30 percent.

Viewing these plots shows that the consistency of maintaining a good
replacement of noise with values close to perhaps the original pixel values is
continuous throughout the range for the median and four-way median filters. On
the other hand, the biweight and the neighborhood replacement filters fall off
in potential performance as the amount of noise contamination increases. The
median and the four-way median filters replace noise with actual original
pixel values, whereas the biweight and the neighborhood replacement filters
manufacture new pixel values that may never have existed in the original image.

.4.
FILTER EFFECTIVENESS

Until the bad pixel check was improved to reduce or eliminate zero-noise
image distortion, the performance of all four filters throughout the entire
range of 0 to 10 percent noise fell short of the expected performance, as
shown by Figures 10 and 11. The four-way median and median filters performed
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well in the 0- to 4-percent noise range, so they could be classed as the

better filter.

Without the bad pixel check, clearly the median and four-way filters are
more effective than the biweight and neighborhood replacement filters as shown

in figure 8.

Figures 12 and 13 show that the median and four-way median filters out-
perform the biweight and the neighborhood replacement filters, and that the

four-way median filter outperforms the median filter at noise levels higher

than 10 percent. These plots were made using the improved bad pixel check

discussed earlier.

SURVEY OF FILTERED IMAGES

A program was written to display the original image, the original image
contaminated by noise, the noise mask, the filtered image, and the mask of the

residual noise and good pixels disturbed by filtering. Due to the fact that
in many cases residual noise remained in the filtered image, the image would
have to be rescaled in order to display it. The rescaling with noise values

from -20 to +20 distorted the filtered image compared to the original. It was
decided to produce a synthetic representation of the filtering action. The

original image was input from disk and displayed as is. Then another working
image was built of the original image plus the 300 offset and plus noise.

This was the image upon which the filter worked. The original image had the
same noise pixels as the working image, but instead of values from -20 to +20

the values were what the operator selected, usually zero, which displayed as
black. The original image with black noise was displayed, then a noise mask
was displayed. The noise mask was built at the same time the black noise was
added to the original image. The noise mask was black with white noise. Then

the filtering action took place. As each pixel requiring replacement (as
,determined by the bad pixel check) was corrected in the working image, a check
was made in the original image for presence of zero pixel values (indicating
noise). If the pixel to be replaced was zero, then the count of noise
replacement was incremented and the noise pixel in the mask was zeroed; if not
zero the count of pixels disturbed was incremented and the pixel in the noise
mask was made purple.

In either event the pixel in the original image was replaced with the
replacement value in the working image minus 300. This was not the correct

value, but served to indicate that a correction had been made, and also re-

moved the zero (noise) values from the original. After filtering, the origi-
nal with synthetic noise removal was displayed, and finally the residual noise

mask was displayed. Pictures were taken of the sequences for different images
and varying amounts of noise. The filter used for the filterinq action was
the median filter.

Figures 14, 15, and 16 show respectively 1-, 5-, and 50-percent noise
masks. It is not likely that any images containing 50-percent noise would be

processed, but figure 16 gives an idea of that aMount of noise.
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Figure 15. 500 noise mask.
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Figure 17 shows 1-percent noise applied to the ocean and cloud image off
Santa Cruz. The picture was dark so white noise was synthetically added.
Below and to the right of the image center is a ship. Noise is not added to
the edge of the image.

Figure 18 shows the results of filtering using a 3x3 neighborhood and
number of sigmas = 2 for the bad pixel check. Original noise remains in the
five-pixel border, which the filter does not cover, and some residual noise re-
mains as seen by the white noise still in the image.

Figure 19 shows the residual noise mask. The large dots are the residual
noise; the small dots are good pixels which have been disturbed. In black and

white photos the difference between the residual noise and the good pixels
that have been disturbed does not stand out too well.

Figure 20 shows 5-percent noise replacement in the lower San Francisco
Bay image. The noise is in black.

Figure 21 shows the results of median filtering. The bad pixel check
employed a 9x9 neighborhood and number of sigmas = 2.5. Of the 10,069 noisy
pixels in the original, the filter removed 10,040, and disturbed only 24 good
pixels. The residual noise mask for this filtering is shown in figure 22.

Figure 23 shows northern San Jose with 10 percent noisy pixels in black.
Using a 9x9 neighborhood and number of sigmas = 2.0, 19,996 noisy pixels were
replaced out of 20,110, and no good pixels were disturbed. The results of
filtering are shown in Figure 24 and the residual noise mask is shown in

figure 25.

Figure 26 shows Santa Cruz and the ocean with 30 percent black noise
added. Using 9x9 neighborhood and number of sigmas = 1.0, 60,709 of the
60,719 noise pixels were replaced by the median filter, and only two good
pixels were cisturbed. The results of the filtering is shown in figure 27,
and the residual noise mask is shown in Figure 28.
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Figure 18. Ocean and clouds off Santa Cruz median filtered.
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Figure 19. Residual noise mask for ocean and clouds after median filtering.
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RECOMMENDATION FOR FUTURE STUDY

Another improvement to the bad pixel check would be to build a bad pixel
mask as shown in figure 29. This would be done by applying the bad pixel
check to the entire image three times. On the first pass the bad pixel check
would sum only the good pixels in its neighborhood for computation of the mean
and sigma. Since the first time through, the pixels above and to the left of
the candidate would have already been marked as a bad or good pixel, the bad
pixels can be left out of the sum.

NEIGHBORHOOD BAD
PIXEL MASK BAD PIXEL MASK

1 0 0 00 ~PROCESSED 1 00 00

S0 0 1 0 PIXELS 0 0 0 1 0 IMAGE

0 0 0 0 0 0 0 1 0 0

0 0 0 00

1 0 100

FIRST PASS: SECOND PASS: THIRD PASS:
Compute mean and sigma of Skip good pixels, recheck bad Use bad pixel mask to filter

submatrix using only good pixels pixels using only good pixels. and replace only bad pixels
mark bad pixels as 1. Make bad pixels good if within (as per maskl.

selected number of sigmas
from mean.

Figure 29. Bad pixel mask.

On the second pass, all bad pixels in the mask can be checked to see if

they are really bad pixels; if not, they can be returned to the status of good

pixels. The mean and sigma computations would be made using only the good
pixels in the selected neighborhood. On the third pass, actual filtering can

be carried out using a 3x3 neighborhood, but only tie good pixels in that
neighborhood would be processed to replace the marked bad pixels. On tht-

third pass, only the bad pixel mask would be screened to determine which
pixels require replacement. Time would be saved on the third pass, since the

noisy pixels have already been tagged. The fLiters would use only the good
pixels in the 3x3 neighborhood around the candidate pixel. Variations in

filtering would have to be made for each filtering operation. The biweight
filter would have to be revised to operate on less than nine pixels. The sort
routine SHELLSORT is designed to handle any number of values.

The median filter would have to be revised to handle even numbers of
pixels (2, 4, 6, or 8) by averaging the first and second (for n=2), the second
and third (for n=4), the third and fourth (for n=6), and the fourth and fifth

(for n=8); and using this average for replacement.
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The neighborhood replacement filter would sum only the good pixels in its
neighborhood and divide by the n of the good pixels.

The four-way median filter, on each of its passes, would not replace
unless at least one good pixel was found in one of the two wings of the ver-

tical, horizontal, or diagonal sets.

In all the filters, when a replacement is made, the bad pixel mask is

updated by making the bad pixel good. This means that the replaced pixel can
be used subsequently in the computations for replacing other bad pixels in its

3x3 neighborhood.
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program onfl
c this program reads daedalus images from disk then introduces
c normal noise then applies biweight filter to remove the noise
c then computes correlation between original and filtered images

include 'teadef. for/nalist'
ZNTEOER*2 cc(262144) !corrupted image-
tnteger*4 seed r(512)
real*S dsum~dsqtcorr,,so5 sc~poc. ssqo~ssqc
real med(9) !array for sorting
byte dd(262144) !original image
character*20 f !file name
seedfl7737 4

do 1 i=1.512I'
1 ~r(i)-Ci-l)*512 !build row table

i-GTINITIAL(1.2) ' mit term function *************l

call OTPROMPTC'ONF1> ')terminal prompt
98 l-gtwordc 'Disk File Name(SFn(DED).IMG)'.f(l:20))

open( unit=7, file-f, form- 'unformatted status- 'old ', errSG8)
read(7,err=69).dd !GET IMAGE
type *, 'IMAGE= 1,f
close(unit=7)
do 7 ir=26. 487 'converting image from byte to i*2 P

do 7 ic=26. 497
ipdd(r(ir)+ic) 'orig bytt
if(ip It. 0)ip=ip+256 'if 129-255 make positive
ipip+300 !shift up to get away from 0 mean gausian noise

7 cc(r(ir)+ic)=ip 'put in contaminated image. tho not yet contan
igt real('* Sigmas for bad pixel criterion='.sig)
i-gt -integ('Neighbarhood Size (ie 3x3=1,5x5=2)-',is) -

igt..integ('09Bad Pux Check; l=Skip ' ik)
fn-(is~is+1)*(is+is+1) 'compute n for
g-204304.0 '# of pixels in 452*452 image
ibp=O 'P pixels contaminated
if(gt ask('Want to introduce noise'.none). eq. no)goto 67
i-gtreal('Enter Percent contaminated', p)
i-gt -real( 'Enter Gaussian Meani'.gin)
i-gtreal( 'Gaussian std. dev. sd)-
do 66, ir=26, 497 'this loop enter 1-p % gaussian noise mean 0. sigma-sd

do 66, ic=26.497 'corrupt whole picture
if (ran Cseed ). gt.I. 0-p )then

cc(r(ir)+ic)=nint(gauss(gm~sd)) !noise
if(ir .ge. 31 .and. ir .le. 452)then

if(ic .ge. 31 and. ic le. 482)ibpibp+1 ' pixels corrupted
end if

end if
66 continue
67 dsum=0.0

dsq=0. 0
do 8 ir=i. 482

do 9 ic-3l,492
ipdd(r(ir)+ic)
if(ip It. 0)ip'ip+256
pd-float(ip*300)-float(cc(r( ir)*ic )) !dif orig-contan
dsum-dsum+pd ' Sum of diffsp

B dsqdsq+pd*pd ' sum of diff squared
dmean-dsum/g 'mean of difference of orig. and contaminated images
dsd-sqrt(dsq/g)-dneanadmean) !stan dcv. of differenceL
type *5 'Diff(CONTAM. -ORIG. ) Mean='.dinean
type *, 'Diff (CONTAM.-ORIG. ) Sigma='.dsd
acpO !# pixels corrected
igp0O 'P good puxs disturbed
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nbp-'O !# bad pixs corrected
do 25. ir-31.48*2 !detect bad pixels and corTPct

do 25 ,ic=31,482
jf(jk no. O)goto 23 !skip bad pixel check, filter all
x=float(cc(,'lir)+ic))
dsq. 0
dsum=0. 0
do 21 iro=-is,is Ifn window compute mean and sigma

do 21 ico--is. is
pc=float(cc(r(zr+ir-o)+-ic+ico)) 'get pixel

P ~dsum-dsum+pc !sum
21 dsq-dsq+pc*pc ! sum squared

cmean~dsum/fn !compute local mean
csdsqrt((dsq/fn)--cmean~cmean) ! local stan dev
if((xgecmea-sig*csd).and. (x. le.cmeaxi+sig*csd))goto 25 !tuad

23 icp~icp+l 'count corrected pixels subtract from conitaminatrd
ict=O
if(cc(r(ir)+ic) It. 200)then

nbp=nibp+l !bad pixs corrected
else

igp.~igp+1 'good pixs disturbed
end if
do 22 iro=-Il !extract 3x3 window

do 212 icoC---l.1
pc=float(cc(r(ir+irx)4-c+ico)) 'get pixel
Ic t=ic t+ I

22 med(ict)i-pc !med index varies from 1-9'
call shellsort(med,9) Ireq for biwgt & imed
call biweight(med. x)
cc (r( ir)+ic )=nint( x

25 continue
tyjpe *.*noise pixeix.=',ibp.' # corrected pixels. >,icp
type * noise pixels fixed--''nbp. * good disttxrbed=', itp
so=0.0 'Sum of orig
scO .0 !Sum of filtered
poc0. 0 1cross prod
ssqo=0. 0 'sum orig squared
ssqc=0.0 ! sum filt squared
dsum-0. 0 'sum of diff
dsq. 0 ' sum dif squared
do 18 ir=31,482

do IEa ic=31, 482
ip-dd(r(iyr)+ic) 'original pixel
if(ip A t. Q)zpxip+ 2

5
6

posfioat (ip+300)
pc=float(cc(r(ir)-ic))
osO=o+po 'sum of orig .

scsc+pc 'sum of filtered%
poc-poc+po*pc !sum cross product

S sqossqo+po*po !sum orig squared
ssqc-ssqc+pc*pc 'sum filtered squared
dsum-dsum+(po-pc) 'sum of diffs

19 dsqdsq+(po-pc)*(po-pc) !sum of dif squared
dmean=dsum/g !mean of difference of original and filtered images
dsd-sqrt(Cdsq/g)-dmean*dmean) !stan. dev of difference
corr=(g*poc-soesc)/(sqrt((g*ssqo--so*so)*(g*Ssqc-scesc)))
tygpe *. 'CDRRELATION(originalFiltered)='.corv-
tyjpe *. 'Diff(FILTEREID-ORIG) Mpan='. dmean
tyjpe C. 'Diff(FILTERED-ORIG) .]'ma-', dsd, *

tyjpe C. 'Biweight FILTER NOISE-'.p
tyjpe *,-NOISE Mlean='. gin.' NOISE Std dpv=', rd. Neigh'.i's

call exit
end
include 'mahlisor for/nolist'
include 'sahfuncor fo-/nolist'
include 'biweight. for/nolist'

C- 3



I"111W WV-. p.VII&TI Irv---. - .

program onr'
c this program reads daedalus itnage fProm dx k then introduces
c normal noise then applies the median filter tO remove the ti(115e
c then computes correlation between original and filtered images
c option added to skip bad pixel check
c variable neighborhood for bad pixel check if dx3, 5x5, etc

include 'teamdef for/nolist'
INTEGER*2 cc1262144) 'this iic corTupted image
integer*4 seed, r(512)
real*8 dsuy, dsq, corr, so, sc, p ., ssquo, ssqc
real med(9) 'array for surtingq
byte dd(262144) 'original image
character*O P ' file name p.

seed=77737 %

do 1 =l, 51P 26
I r(i)=(i-l)*512 'build row table ,

i=GT INITIA (1,2) ' nit term function
call T PROMPT 0NF2":> 1) 'terminal prompt

Be i=gt word(Qi)isk File NameUSFn(DED) IMG)='f(1 20)"
open(unit=7. filef, rorm= 'unformatted', status- 'old err=8)
read(7, errB8),dd 'GET IMAGE
type *, 'IMAGE= ' ,f
close(unzt -7)

do 7 ir-26, 497 'converting image from byte to i*,'
do 7 ic=;'b,487

xpr.dd(rmir)+ic) orig byte
xl(fp It O)ipl-xp+256 'if 28-255 make positive
xp=p+00 oO 'shift up to get away from 0 mean gausian noise

7 cc(rr ) icIc=ip Iput in contaminated image, th not yet ct;tam

i=gt real('# Sigmas for bad i xel riterion-', sig)
i=gt_.integ('Neighborhood Size (ie 3x3=1,5x5=2)=', is)
i=qt integ('O=Bad Pix Check; l"Skip =', ik
fn=(is+is+1)*(is+isl) !compute n for bad pix check
g=204304 0 '# of piylIs in 452*452 image
ibp-0 '# pixels corrupted
if(gt ask( Want to introduce nozse',none).Pq no)guto 67
igtrea('Enter Percent contaminated',p) . -

i=gtreal( Gaussian mean=',gm) 'allow any gaussiani mean 'a'
i=gtreal('Gaussian std.dev. ',sd)

do 66, ir=26,487 !this loop enter 1-p % gaussian noise mean O, sxq,,iazsui
do 66. 2c- 26,487

if(ran( seed), gt 1 0 -p)then
cc(r(ir)+ic)=nint(gauss(gm sd) ) 'noise
ifu(r ge 31 and. ir le 482)then

iflic ge :31 and ir le 482 )1b1:1bp+l ' # pixels co'r 11.ted
end if

end i f
66 continue

67 dsum"=O.O
dsq=O 0
do 8 ir=31,4821

do 8 ,c"31,402
xp=dd -(c T,' c)
if Imp It OI p -1 p42 )h
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pd=float( ip+300)-float(cc(r( xr)+ic)) ! diff orig-corrupted
dsum-dsum+pd

9 dsq-dsq+pd*pd
dmean-dsum/g !mean of difference of orig. and contaminated images
dsdsqrt((dsq/g)-dmean*dmean) ! stan. dev. of difference
typo C. 'Djff(CONTAM.-ORIG. ) Mean='.dmean
type C. 'Diff(CONTAM. -ORI0.) Sigma='.dsd

* icp-O !4 pixels corrected
nbpO 0

do 25 ir-31-482 !detect bad pixels and correct
do 25 ic=31,482

if(ik .no. O)goto 23 '!skip bad pixel check, filter all
Ksfloat(cc(r( ix )ic) 3
dsq0. 0
dsum=O. 0

*do 21 iro--is~is !fn window compute mean and sigma
do 21 ico=-is. is

pc=float(cc(r~ir+iro)+ic+ico)) !get pixel
dsum-dsum+pc !sum

21 dsqdsq+pc*pc ' sum squared
cmeandsums/fn !compute local mean
csd=sqrt(dsq/fn-cmean*cmeen) 'local stan. dev
iF((x. ge. cmean-sig*csd). and. Cx. le. cmean+sig*csd))goto 25 !good

23 icp=icp+l !count corrected pixels
if(x A t. 1OO.0)then
nbp-nbp+l !found bad pixel

else
igp~igp+1 'correcting good pixel

end if
ict=01
do 22 iro-1, 1 !3x3 window filter

do 22 ico=-l,1l
pc=float(cc(r(ir+iro)+ic~ico)) !get pixel
ict=ict+l

22 med(ict)=pc 'med index varies from 1-9
call shellsort(med,9) !req for med
cc(r( ir)+ic)=nint(med(5) ) 'median
if(float(cc(r(ir)+ic)).eq.x)igpigp-1 'same pixel

25 continue

tyjpe C'6corrupted pixels=', ibp, ' #corrected pixels=', icp
type * 6corrected pixels=', nbp, ' *disturbed pixels=',igp
soO0.0 !Sum of orig
scO0.O !Sum of filtered
poc=0.0 !cross prod
ssqo-O. 0 !sum orig squared
ssqc-0. 0 ! sum filt squared
dsum=0.O !sum of diff

* dsq. 0 !sum dif squared
do 19 ir-31,4e2 I

do 19 ic=31,482
ip-dd(r(ir)+ic) !original pixel
if(ip It. 0)ip=ip+256
pofloat Cip+300)
pc-float Ccc CrCir)S+ic))
so-so+po !sum of orig
sc-sc+pc 'sum of filtered
poc-poc+pa*pc !sum cross pr'oduct
ssqo-ssqoepo*po !sum orig squared

ssqc-ssqc+pcepc 'sum filtered squared
dsum-dsum+(po-pc) 'sum of diffs

19 dsq-dsq+(pa-pc)*(po-pc) 'sum of dif squared

dmean-dsum/g 'mean of difference of original and filtered images
dsd-sqrt((dsq/g)-dmean*dmean) Istan. dev of difference
corr=(g*poc-soesc)/(sqrt((g*ssqo-so*so)*(g~ssqc-sc*scf)
type *. CORRELATION~original~filtered)='.corr
type *. 'Diff(FILTERED-DR103 Mean=',dmean
type *, 'DiffCFILTERED-ORIG) Sigma='. dsd,
typo *, 'Median FILTER NOISE=' p
type C. 'Gaussian NOISE Mean=' gin.' NOISE Std Dev=',sd
call exit
end
include 'mathfunc for/nolist'
include 'shellsort for/nolist'
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program onf3
c this program reads daedalus images from disk then introduces
c normal noise then applies the neighborhood replacement filter to
c remove the noise then computes correlation between original and
c filtered images.

include 'teamdef~for/nolist'
INTEOER*2 cc(262144) 'this is corrupted image
real*8 dsum~dsq~corr~so~sc~pccssqo~ssqc
integer*4 seed,r(512)
byte dd(262144) 'original image
character*20 f 'file name

seed=77737
do 1 i=1,512

1 r(i)=Ci-1)*512 !build row table

i=GTINITIALUI.2) !iit term function
call CT -PROMPT(UCNF3> ! terminal prompt

88 igt wrd('Disk File Name(SFn(DED). IMG)=',f(1:20))
open(unit=7,file=f,form='unformattedtstatus='oldtePrr=68)
read(7,err=881),dd 'GET IMAGE
type *, 'IMAGE= 1 f
close(unit=7)

do 7 ir=26, 487 !converting image from byte to i*2
do 7 ac=26, 487
ipdd(r(ir)+ic) aorig byte
if(ip . t. O)ip=ip+256 'if 1283-255 make positive
xpip+300 !shift up to get away from 0 mean gausian noise

7 cc(r(ir)+ic)=ip 'put in contaminated image. tho not yet contan

i-gt real('# Sigmas for bad pixel criterion='.sig)
igtinteg(Neighborhood Size (ie 3x3=1. 5x5=2)=', is)
i-gtmjntegU'O= Dad Pix Check; 1=Skip',ik)
fn=(is+is+I)*(is+is+l) !n for neighborhood
g=204304.0 '# of pixels in 4 52*452 image
ibp=0 '# pixels corrupted

4if(gt -ask('Want to introduce noise',none) eq no)goto 67
I=gt -real('Enter Percent contaminated'.p)
igtreal('Gaussian mean=' gin) 'allow any gaussian mean
igt-real( 'Gaussian std. dev.' sd)

c*********************contaminate with nie***********
do 66. ir=26,4B7 !this loop enter 1-p %. gaussian noise mean O~sigma=sd

do 66. icr2b,487
if(ran(seed).gt.1.0-p)then

cc(r(ir)+ic)=nint(gauss(gn,sd)) !noise
*if (ar .ge. 31 .and. it le. 482)then

if(ic .ge 31 and. ic .le. 4832)ibp~ibp+ 1#' pixels corrupted
end if

end if
66 continue

CC~~ae***eaas****sifbetween orig/contaminated********************
67 dsumO.0

dsq=O 0
do 8 xr=31. 4832

do 8 xc=il.482 A

tpdd~r( ir)+ic )
af(ip It 0)ipip+256
pd=float(ip+300)--float(cc(r(zr)+ic) ) Idiff orig-corrupted
d sum d sum+ pd
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9 dsqsdsq+pd*pd
dueanwdsum/g !mean of difference of orig. and contaminated images
dsd-sqrt((dsq/g)-dmean*dmean) !stan. dev. of difference
type e. 'DifICCONTAMt -URIC. )Mean=''dmean
type *s 'Diff(CONTAM. -URIC. )Sigma-'.dsd
icp=O !# pixels corrected
igp=O '# good pixels disturbed
nbp0 !*noise pixels corrected

c***e*a********FILTER IMAGE *******************

do 25 ir=31. 492 !detect bad pixels and correct
do 25 ic=3l1 492

x-float (cc Cr CiT)+ic) )
if(ik .ne. O)goto 23 'skip bad pixel check
dsq=O. 0
dsumO.0
do 21 iroc-is, is !11ix11 window compute mean and sigma for window .

do 21 ico-is, is
pc-float(cc~r(ir+iro)+ic+ico)l 'get pixel '

dsumdsum+pc ! sum
21 dsqdsq+pc*pc !sum squared

cmean=dsum/fn !compute local mean
csdmsqrt(dsq/fn-cmean*cmean) 'local stan. dev
if((x. ge.cmean-sig*csd). and. Cx.is. cmean+sig*csdflgoto 25 !goad

23 icp~icp+l 'count corrected pixels
i#Cx .It. 100. 0)then
nbp=nbp+l !noise corrected

else
igpigp+1 'good disturbed

end if
dsum=0. 0
do 22 iro=-1. 1!3x3 window filter

do 22 ico=-Il.
pcfloat(cc(r(ir+iru)+ic+ico)) 'get pixel

22 dsum=dsum+pc !summing pixels 1-9
cc~r~ir)+ic)=nint((dsum-x)/B3.0) ! neighborhood replacement
if(float(cc~r(ir)+ic)) eq. x)igpigp-1l !same value

25 continue
c********************evaluatefiIt***************1

type *5 # corrupted pixels='5 ibp. ' #corrected pixels='.icp
type * '6 Lorrected noise='snbp. ' #disturbed pixels='.igp 5

so=0.0 'Sum of orig '5%

scO0.O 'Sum of filtered
poc=0. 0 ' cross prod
ssqoO0.0 !sum orig squared
ssqcO.0 sum filt squared
dsumO0.0 'sum of diff
dsqO .0 !sum dif squared%
do 19 ir=3l,492

do 19 zc=3l,492
ipdd(r(ir)+ic) 'original pixel
if(lp It. 0)ipnip+256
pofloat( ip+300)
pc~float~cc(r(ir)+ic)) 'filtered pixel
soso+po ' sum of orig
sc~sc+pc ' sum of filtered
pocpoc+po*pc 'sum cross product
ssqo-ssqo+po*po 'sum orig squared ~
ssqcssqc+pc*pc 'sum filtered squaredx
dsum-dsum+(po-pc) 'sum of5 diffs

19 dsqdsqs(po-pc)*(po-pc) 'sum of diP squared
c**************compute & display results of evaluatxon********s**********;o*

dmean=dsum/g ' mean of difference of original and filtered images 9

dsd=sqrt((dsq/g)-dmean*dmepan) 'stan. dev of difference C
corra(g*poc--so*sc)/(sqrtC(g*ssqo-so*so)*(g*ssqc-sc*st))) S
type *,'CORRELATION~original,filtered)'coir
type *, 'DiPPCFILTERED-DRIG) Pean='5 dmean
type *,'DifPCFXLTERED-ORIC) Sxgma='. dsd. '

type *, 'Neighborhood Replacement FILTER NOISE='*p
type *, 'Gaussian NOISE Mean=' gin.' NOISE Std Dev='. sd
call exit
end
include 'mathfunc. for/nolast'
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program onf4
c this program reads daedalus images from disk then introduces
c normal noise then applies criss-cross filter to remove the noise
c then computes correlation between original and filtered images

include 'teamdef.for/nolist'
INTEOER*2 cc(262144) !corrupted image C

integer*4 seedr(512),rt(4) 4"

real*8 dsqdsum,corr,so,sc,poc,ssqo.ssqc
bgte dd(262144) !original image
character*20 f !file name
data rt/512,1,513,511/

seed-77737
do 1 i=1,512

I r(i)=(i-l)*512 !build row table

i=GT_INITIAL(1,2) !init term function
call GTPROMPT('ONF4> ') !terminal prompt

as i=gtword('Disk File Name(SFn(DED). IMG)=',f(l:20))
open(unit=7, file=f form='unformatted', status='old',err=88)
read(7,err=SS),dd !GET IMAGE
type *, 'IMAGE= ',f
close(unit=7)

do 7 ir=23,490 !converting image from byte to i*2
do 7 ic-23,490

ip=dd(r(ir)+ic) !otig byte
if(ip .It. O)ip=ip+256 !if 12S-255 make positive
ip=ip+300 !shift up to get away from 0 mean gausian noise

7 cc(r(ir)+ic)=ip !put in contaminated image.tho not yet contam

i=gt real('# Sigmas for bad pixel criterion=',sig)
i=gt integ('Neighborhood Size (ie 3x3=1; 5x5=2)=', is)
i=gt integ('O= Bad Pix Check; 1= Skip=',ik)
fn=(is+is+l)*(is+is+l) !n for neighborhood
g=204304.0 !# of pixels in 452*452 image
ibp=O !# pixels contaminated
if(gt ask('Want to introduce noise',none). eq. no)goto 67
i=gt real('Enter Percent contaminated',p)
i=gt real('Enter Gaussian Mean',gm)
i=gt real('Gaussian std.dev. ',sd)

C******************CONTAMINATE WITH NOISE************************
do 66, ir=23,490 !this loop enter 1-p % gaussian noise mean O,sigma=sd

do 66, ic=23,490 !corrupt whole picture
if(ran(seed). gt. 1.0-p)then

cc(r(ir)+ic)=nint(gauss(gmsd)) !noise
if(ir .ge. 31 and. ir .1e. 482)then

if(ic . ge. 31 .and. ic . le. 482)ibp=ibp+l * pixels corrupted
end if

end if
66 continue************************* ***************************************

67 dsum=O0.
dsq=0.0
do 8 xr=31,482

do 8 ic=31,482
ip=dd(r(ir)ic)
if(ip it. O)ip=ip+256
pd=float(ip+300)-float(cc(r(ir)+ic)) !dif orig-contam
dsum=dsum+pd 'Sum of diffs
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9 dsq=dsq+pd*pd !sum of diff squared
dmean-dsum/g !mean of difference of orig. and contaminated images
dsd-sqrtC(dsq/g)-dmean*dmean) !stan. dev. of difference
tyjpe *. 'Diff(CONTAM.-ORXQ. )Mean=',dmean
tyjpe *. 'DiffCCONTAM.-ORIG. )Sigma=',dsd

icp=O ~Spixels corrected
nbp=O 0noif-e corrected
igp-O '0good disturbed
ip~l

9 do 25 ir-28+ip-l145-ip+1 'detect bad pixels and correct
do 25 ic=29+ip-1.485-ip+1

x-float Ccc CrCir )+ic)
if~ik ne. O)goto 23
dsq0. 0
dsum=0. 0
do 21 iro=-is, is !fn window compute mean and sigma

do 21 ico--is~ is
pc=float~cc(r(ir+iro)+.ic+ico)) 'get pixel
dsumdsum+pc !sum

21 dsq=dsq+pc*pc !sum squared
cmean~dsumffn !compute local mean
csd=sqrt~dsq/fn-cmean*cmean) !local stan. dev
if(Cx. ge. cmean-sig*csd). and. Cx. le. cmean+sig*csd))gota 25 'good

23 p2=float~cc~r(ir)+ic-rt~ip)))
p3=float(cc~r~ir)+ic+rt(ip)))
xx=x !save
if(p2 . e. p3)then !x p2 p3
if~p2 . e. x)goto 117 Ix p2 p3
if(K . i. p3)goto 25 !p2 x p3

116 x=p3
else !x p3 p2

if(p3 .ge,. x)goto 116 !x p3 p2

ifox le. p2)goto 25 1p3 x p2
117 x=p2 !p3 p2 x

end if
icpicp+l !count corrected pixels subtract from contaminated
ccCr Cir )+ic )=nint Cx)
if~xx At. 100.O)then

nbp=nbp+l
else

if~x ne. xx)igp=igp+l 'pixel disturbed
end if

25 continue
tyjpe *'0corrupted pixels=' ibp. ' # corrected pixels=', icp
tyjpe *'0corrected pixels=', nbp. ' # disturbed pixels='.igp
ip=ip+l
if~ip .it. 5)goto 9

C~e**e**o*eevlaerslt************************eaut
A soO0.0 !Sum of orig

scO0.O 'sum of filtered
p oc=O. 0 !croC)ss prod
ssqo=0.0 '!sum orig squared

s sqc=O. 0 !sum filt squared
dsum=O. 0 Isum of diff
dsq. 0 !sum dif squared
do 119 ir=31, 482

do IS ic=31,482
ipdd~r~ir)+ic) 'original pixel

pofioatC ip+300)
pc=float(cc(rir)+tc))

S o=so+po 'sum of orig
sc=sc+pc 'sum of filtered
poc-poc+po*pc -sum cross product
ssqo-ssqo+po*po !sum orig squared
ssqcssqc+pc*pc 'sum filtered squared
dsum-dsum+Cpo-pc) 'sum of diffs

18 dsqdsq+Cpo-pc)*Cpo-pc) !sum of dif squared
dmean=dsum/g 'mean of difference of original and filtered images
dsd=sqrtC(dsq/g)-dmean~dmean) 'stan dev of difference
corr-(gepoc-soscs/sqrt(g*ssqo-sooso)*(gessqc-sc*sc)))
tyjpe *, 'CORRELATION(original.filtered)='corr
tyjpe *. 'DiffCFILTERED-ORIG) Mean=', dmean
tyjpe e. 'DiffCFILTERED-ORIG) Sigma=',dsd,'
type *, 'CRISS-CROSS FILTER NOISE=', p
type *, 'NOISE Mean=', gmx. NOISE PStd dev='. sd
call exit
end
include 'mathfunc For/nolist'
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c biweighted 3xZ3 filter compute weighted mean from input iara

subroutine tiweight(med. shat)
real*4 med(*), shat

c * of elements in med=9,median-med(b)
sp=(med(7)-med(3))/l. 349 !compute standard deviation from quarti
if(sp.eq.0)sp=l.4B3 !cant have 0 sd

* 55SP*5. 0
c calculate initial xhat value

sl=0. 0 !sum
s2=0.0 !n
do 10 i=1,9 'throw out outliers > 5 std devs

if(abs(med(i)-med(5)) .gt. s)goto 10 -

sl=sl+med(i) !sum of non-outliers
s2=s2+1.0 !n of non-outliers

10 continue
xhatsl/s2 !iit computed mean
sws+sp !6.0 std dev
s1=0.0 !sum of weighted non-outliers
s2=0.0 !sum of weights
do 30 i=1.9

x=(med( i)-xhat)/s
* x=x*x

if(x. gt. 1.0) X=1. 0

wp=(l. 0-Xl(i. 0-i)
sl~'sl+wpamed (i)

30 s2=s2+wp
xhat=sl/s2
end

REAL FUNCTION GAUSSiMEANDEV)
* computes a random number from a normal (gaussian) distributioni with
* the givent mean arid deviation

real mean, dev.ran. *.um.xx. set gauss seed
integer irar., I, idum
data iran/-l/

sum=0. 0
do j -l, 50

rSUM",um+Tan( iran)
enddo
sum-~surn/50, 0
xx=sqrt(12 0 v 50.0) is (sum-O 5)

% gauss=xx*dev * mean
return

entryj ,tgauc.sPdidumn)
-- iran-iduPM

set .gau., _ seed=O 0
retuirn
end

c shell sort
c sort the real arr~jy elements I(,) to I())

C ascending orde~r
c

subroutine sliell,,orA(x ri)

real*4 x(*i, temp
* rnteger*4 i~yn,ndelt~a

loglidi inordr
c

ndel ta-n
10 if(ndelta 9t l)theii

ndeltai=ndvlIta/?
20 inordr: true

do '30. * J,yi-PidPjta '

if (Xii) gt X I 4ridi'ita) 01011
temp -x I )

ir I #ndel ta ) Att'fii

&-id i f

L f hOt I t-# liit (

goto 10

end iF
end
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program onfb

include 'teandef. for/ncslist'
INTEGER*2 cc (262144), bay.jo !Wit; is corrupted image
real medCV)
real*B dsum. dsq
integer*4 seed. r(512)
by to ddC262144), bb (26W144), sU!). si,(2) !a originalI image, blank image
character*20 f PFile name
equivalence (s, sav). (inu. ss)

seed=77737
do 1 i=1.512

*1 r(i)=(i-1)*512 !build row table

do i-1,262144 !clear noise ni&-k
bbCi )=O h

end do
i=CT-INITIAL(1,2) !ii-it term funiction
call CTPROM'PT( 'NDNP> ') ! terminal prompt
call ipinit ! initiate deanzai

a8 igtord(Disk File NamuISFnCDED).IJ1)',f(1:20))
open(unit=7, file=f~form='unfujrriatte',status='old',err=8s)
read (7,.err=EJ), dd ! QET IMAGE
close(unit=7)
call display~dd,262144,.51i.OO) ! display raw image0

do 7 ir=26, 487 !converting imaige from byte to 1*2
do 7 ic-26. 487
ipdd(r(ir)+ic) !orig byte
if(ip .At. O)ip~ip+256 ! iF 128-255 snake positive
ipipt300 !shift up to get away from 0 mean gausian noise

7 cc(r(ir)+ic)=ip !put in contam inated image. tho not yet contan

igt _real('# Sigmas- for bad pixel criterion=',sig)
igt.Jnteg('Neighborhad Size Cie 3x3=1,5x5=2)1, is)
fn=(is+istl)*(is+is+l) !n for neighborhood
r=204304.0 !# of pixels in 452*452 image
ibp=O !# pixels corrupted
if(gt-ask('Want to introduce noise ',none). eq. no)goto 67
ingtjinteg( 'Color of Noise=',ino)

* ~isgt-real('Enter Percent contaniinated(l0X. )',p)
i-gt-real('Gaussian inean-'. gi) !allow any gaussian mean
igt real'Qaussian std. dcv. '.d)

* ~C*********************contaminate wi thnis***********
sav=254
do 66. ir"26, 487 !this loop enter 1--p %. gaussian noise mean 0, sigia: sd

do 66. ic=2b,467
if(ran(seed) .gt. l.0-p)then

* cc(r(ir)+ic)=nint(gass,gn, sd)) !noise
dd(r(ir)+ic)nss(1) !put noise in picture color selected (inn)
bb(r(ir)+ic)r=s(1) !put noise in blank image (mask) (inn)
if (ir . e. 31 . anid. ir .le. 482)then

ifCic .ge. '31 .and. ic .lc. 402)ihp=ibpl !# pixels corrupted
end if

end ifr
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66 continue
C***.**e**e.s***** Ifbetween orig/contaminated********************

67 icp=0 ! pixels corrected
igp=O !goad pixels fixed
nbp0O !# bad pixels fixed
call display(dd.262144,5lJ.O.0) !display noise
if~gtask( 'Display !3lank '.none). eq. VES)calI diuplaybb. 262144. 511. 0.0)

c***********n*FILTER IMAGE *******************

do 25 ir=31. 482 ! detect bad psixsrls and correct
do 25 ic=31.482

x'=f Iloat (cc (r C iy ) Iic ) Y
dsq=0. 0
dsum=0. 0
do 21 iro=-is, is !lixil window coinpuito mean and sigma for window

do 21 ico=-is;, is
pc~float(cc(r(ir+iot)+ic-4ico)) !ye~t pixel
dsumdsurnycj ! tium

21dsq-t-qtpc*pc .,m quard.u
cmeaviv'dsum/frn comptite local mean
csd--sqirt Cds~q/f--Cmean*crneani) !local stan. dcv
if (x. go. cmean-sig*csd). avid. (x. le. cmean+ig*csd))yioto 25 goodp
icpicp+1 !count corrected pixels
it=o

do 22 iro=-1, I ! extract 'Ix) window
do 22 ico=-l. I

pc=float(cc(r(ir,-'iv~o)+ic+ico)) !get pixel
ictt'Pct+I

*22 med Cirt)pc
call shellsort~iined, 9)
savnintgned(S))--300 ! median pixel
if(sav . lt. Ohf;ivzt0
d d(r ( ir )+i c )=s;(I! 5corr ucted p ixelI i i. or ig p ic
i f(c c(r (ir) + ic) .lt. 200) t-h en ! bad pixel fixed

nbp-nbp+l !bad pixel lixed
bb(r(ir)+ich--0 !blackP pixel

else
igp :igp+l !good p i xel mnrsstd tit
bbicinir)tic)=s(L) ! tapi low pixel

end if
25 continue

call display (dds 262144, 511, 0. 0) ! di ;pli.'Ij Lurrocted pix
type .'Ncorrupted p ixels='. i lp.' Jcorrected p ixcls-'. icp
type *'#corrupted pi' ixrls Cxd"'np.'#guud made bad - igp
if(gt_ask( 'Displau rfl1.nk nonc). eq. YES)then

call dispiay(bb. 260144. 511.0. 01
end if

c**************contputc & d isplay ro!ul ts ofevuai******e****
type *, FILTrERNOS-'
type *,'Gaussian NOISE Mean?',ygin. NOISE Std Dev"', sd
if (gt askC( 'Quit '.none). eq. YE.S)Cal IeX it gives time to display iaragr:
end
include 'mathfunc. forfnnl itL'
include 'shellsort.for/suilist'
include 'ipinit.for/iiolist'

% Li
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